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The exact complex potential generated by the maximal measure for a family of 
rational maps is given. The results are of analytical nature because the complex 
potential does not change nicely if the coordinates of a rational map are 
changed. There exist applications of this result to the theory of moments. 
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1. I N T R O D U C T I O N  

Consider f ( z )  a rational map on the Riemann sphere of degree d of the 
form 

p(z) z a + a a _ ~ z a - l + " "  + a l z + a o  
f ( z )  = = 

q(z) bkzk + ''" + b l z + b  o 

where a i~C,  bj6C,  i 6 { 0 , . . , d - l } ,  j ~  {1,...,k}, and d > k .  Suppose also 
the Julia set o f f  (see ref. 5) is bounded in the complex plane. 

Let Zo be a point on the complex plane and for each n ~ N ,  
i t  { 1,..., d"}, let z 7 be the d" solutions o f f n ( z ) = z o .  

Consider now 

1 a. 

i= l  

where 6 x is the Dirac measure on x. 
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In refs. 7 and 10 it is shown that there exists u = lira n .  o~ un and this 
measure u is the measure of maximal entropy. Some authors call this 
measure u of balanced measure/1-3) 

As is very well known, the Julia set of a rational map can have a very 
complicated structure and has in general a fractal dimension/5'11) The 
maximal measure of a rational map, therefore, can have support in a very 
strange subset of the plane. It would be very difficult to give an explicit 
analytic expression for such a measure. 

A nicer object to work with is the potential function F(z), ~1's) which 
satisfies: F(z) is analytic around 0% F ( o e ) =  0% F ' ( o e ) =  1, and for z ~  oe 

log [F(z)[ = f log [z - x[ du(x)  

In ref. 8 it is shown that for z ~  0% F(z)  satisfies the functional 
equation 

F(z)  d 
r ( f ( z ) )  = 

q(z) 

when 

p(z )  za + "'" + ao 
f ( z )  = - -  

q(z) bkz k + ' ' "  +bo 

Here we will show that for a certain family of rational maps, given 
f ( z ) ,  we can solve the functional equation and obtain F(z). 

T h e o r e m .  Let f ( z )  be a rational map of the form 

z2 + cz + d p(z )  
f ( z )  - = - -  

mz  + n q(z) 

where ]ml < 1 (in order to have the Julia set bounded). In the case there 
exist e, f E  C such that 

(I) e 2 = e n 2 +  f d n + d  2 

(II) 2e f  = 2 e m n +  ( d m + c n ) f  + 2dc 

(III) ( 2 e + f 2 ) = e m  2 + f ( c m + n ) + ( 2 d + c  2) (*) 

(IV) 2 f  = f m  + 2c 

then F ( z ) =  (z 2 + f z  + e) 1/2 is a solution of the functional equation 

r (z )  2 F(z)  2 
F ( f ( z ) )  . . . .  

q(z)  mz  + n 
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Remark. For  f ( z )  a polynomial map, we will not obtain solutions 
that are not trivial ones [all conjugated to z 2 = f ( z ) ] .  

The proof  of the theorem is given in Section 3. Some applications of 
the theorem are given in Section 2. 

Brolin (5) was the first to notice the electrostatic properties of the Julia 
set, by showing that for polynomials, the balanced measure as defined in 
the introduction is the charge distribution in the Julia set. (13) 

In ref. 8 it is shown that for rational maps such that f (oo )  = oo and 
the Julia set is bounded, then the maximal measure is always different from 
the charge distribution. In ref. 6 it is shown that the charge distribution in 
the Julia set can be obtained by a generalization of the procedure of Brolin. 

As a final remark, I mention the fact that the complex potential does 
not change by means of a change of coordinates if one performs a change 
of coordinates for the rational map. 

2. THE M O M E N T  PROBLEM 

For  a given measure u, the moments  of the measure u are by definition 

Mk = f z k du(z) for k e N 

The problem of computing the moments  of a certain measure is a 
classical subject in the theory of orthogonal polynomials, Pad6 
approximants,  and potential theory. {12' 13) 

Some authors have already considered the problem of obtaining the 
moments  of the maximal measure. {~-4'8) In general this problem is 
associated with a three-term relation. 

If one knows the potential function F(z), one can obtain the moments  
in the following way: for z ,-~ 0 we have 

F ' ( z - 1 )  f Z -1 - - = Z  -1 (Z -1 - -X)  -1 d u ( x )  
F(2 -1 ) 

1 - x z  n 0 n=O 

The theorem announced in Section 1 allows one to obtain the explicit 
value of  the function F(z) and therefore the moments,  as observed above. 

Assuming d = 0  in ( ,) ,  we obtain f ( z )  of the form 

z 2 + (2 - m)nz 
f ( z )  = , 0 < [ml < 1 

m z + n  

and we obtain F(z) = z + u. 
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Therefore F ' ( z ) / F ( z ) =  1/(z + n) and the moments are Mk = n k. 
Note that one can obtain this information just by knowing the 

coefficients of the rational map, without knowing exactly this measure. This 
shows the utility of the function F(z). 

The information given by the moments is very useful if one wants to 
obtain approximations of the values of the integral of a certain function 
~0(z) with respect to u. One just has to consider good approximations of 
q~(z) by polynomials and use the moments. 

For  the maximal measure, for instance, this method is more suitable 
for computations that try to use directly the definition of the measure given 
in Section 1. For  a rational map of degree larger than four this method of 
moments is particularly more suitable. 

3. PROOF OF THE T H E O R E M  

Proof.  Supposef (z)  = (z2 + cz + d) / (mz  + n) and F(z ) = (z2 + f z  + e) 1/2, 
and make the change of coordinates z -1. Denote by f ( z )  and F(z)  the 
corresponding functions in the new variables for z ,,~ 0. Therefore 

nz 2 + mz z 

f ( z ) = d z 2 + c z +  1 ' F ( z ) = ( e z 2 + f z + l ) l / 2  

and the new functional equation is 

F ( f ( z ) )  = F(z) 2 - -  
m + n z  

The first term is therefore 

r(f(z)) 

= (nz 2 + mz) / (dz  2 + cz + 1) 

F~(nz 2 + mz)  2 + S(nz ~ + mz) (dz  2 + cz + 1 ) +  (dz ~ + cz + 1)~q-1~ 
X l J ( d z  2 + Cz --[- 1 )2 

rtz 2 + m z  

[e(nz  2 + mz)  2 + f ( n z  z + mz)(dz  2 + cz + 1 ) + (dz 2 + cz + 1 )2] 1/2 

The second term is 

F(z)  2 m + nz z 2 m Af. n Z  = FIZ 2 Af- mz 

z ez 2 + f z  + 1 z ez 2 + f z  + 1 
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The result follows if 

(ez 2 + f z  + 1 )2 = e(nz 2 + mz)2 + f ( n z  2 + mz)(dz  2 + cz + 1 ) + (dz 2 + cz + 1 )2 

The four relations (I)-(IV) are the equations that have to be satisfied by 
the coefficients of z, z 2, z 3, z 4 for the two four-degree polynomials above. 

From ref. 9, F(z) is the unique solution of the equation such that 
F'(ov)= 1. 

This is the end of the proof of the theorem. 

Remark  1. One can obtain e and f from c, d, m, and n linearly from 
(II) and (IV). 

Remark  2. After this paper was written, P. Moussa communicated 
to me that if one considers g ( z ) =  z 2 +  cz, c e C, and makes a change of 
coordinates z-1  followed by a translation, one obtains f ( z )  in the example 
considered here when d =  0 (see Section 2). In this case he already knew 
the solution F(z) = z + n. 
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